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Considering a bistable system driven by additive and multiplicative colored noises
with colored cross-correlation, we obtain the analytic expressions of the stationary
probability distribution Pst(x), the linear relaxation time Tc , and the correlated function
C(s). The effects of the noise intensity, the self-correlation time and the cross-correlation
time for the bistable system are discussed. The noise intensity D speeds up relaxation of
the system from unstable points, which when D < Q, the effects are the most obvious;
when D > Q, the effects are damped. The self-correlation time τ1 and τ2 make the
stationary probability distribution of the dynamical variable x be shaper and speed up
the fluctuation decay of the dynamical variable x . On the contrary, the cross-correlation
time τ3 makes the stationary probability distribution of the dynamical variable x be
flatter and slows down the fluctuation decay of the dynamical variable x . The effect of
the self-correlation time is more projecting than the effect of the cross-correlation time.

KEY WORDS: Bistable system, cross-correlated colored noises, probability distribu-
tion, relaxation time, correlation function
PACS number: 05.40.−a, 02.50.−r, 05.10.Gg.

1. INTRODUCTION

Dynamical properties of a bistable system with noises is a very typical and im-
portant problem in statistical mechanics. Formerly, in most the previous works,
the noises were treated as to be uncorrelated, since it was assumed that they have
different noise origins. However, Fedehenia,(1) and Fulinski and Telejko(2) pointed
out that the noises in some stochastic process may have a common origin, and

1 Department of Physics, Simao Teacher’s College, Yunnan 665000, China; e-mail: zhuupp@163.com

1511

0022-4715/06/0900-1511/0 C© 2006 Springer Science+Business Media, Inc.



1512 Zhu

thus may be correlated, for example as in laser dynamics the case is shown by
Ref. 4. There are also some situations where strong external noises can lead to
some changes of the internal structure of a system so that the internal noise and the
external noise should be independent.(2, 4) Thereafter many physicist have widely
started to study the effects with correlations between additive and multiplicative
noises in stochastic systems, and found some interesting results.(3, 5–13) Hanggi
et al.(14–16) early begin to investigate “colored noise" issue. Illustrating the Mori
theory and the Dupuis algorithm, Faetti and Grigolini et al. described time behav-
ior of non-linear stochastic processes in the presence of multiplicative noise: from
Kramers’ to Suzuki’s decay.(17) Using the Novikov theorem and the steady-state
value of the deterministic theory, Jia and Li analyzed the steady-state properties of
the bistable kinetic model with cross-correlated additive and multiplicative white
noises.(5) Applying means of the projection operator method, Xie and Mei in-
vestigated dynamical properties of a bistable kinetic model with correlated white
noises,(18) and then Mei et al.(19, 20) investigated the effects of cross-correlation
for the relaxation time and the correlated function of a bistable system and shown
the dynamical properties of a bistable system with cross-correlated white noises.
In 1994, Gammaitoni et al.(21) discussed stochastic resonance with interplay of
additive and multiplicative noises. Recently, as the ongoing studying works further
deepen, people have been more and more interested in the stochastic system with
self-correlated and cross-correlated additive and multiplicative colored noises. As-
suming the self-correlation time and the cross-correlation time of the additive and
the multiplicative noise to be the same value, Ling et al.(10) discussed moments of
intensity of single-mode laser driven by additive and multiplicative colored noises
with colored cross-correlation. Considering the self-correlation time of the multi-
plicative noise τ1 �= 0, the self-correlation time of the additive noise τ2 = 0, and
the cross-correlation time τ3 = 0, Ling et al.(22) yet discussed the stationary prob-
ability distribution of a symmetric bistable system with cross-correlation additive
and multiplicative noises. In 2005, Borromeo et al.(23) shown that a finite additive
and multiplicative noise correlation can induce spatial asymmetries in a bistable
system. From these researches, we see that the effects of the self-correlation time
and the cross-correlation time between additive and multiplicative noises for a
bistable system is very interesting.

The purpose of this paper is to discuss the effects of the self-correlation time
and the cross-correlation time between additive and multiplicative colored noises
for a bistable system. In Sec. 2, we introduce the approximative Fokker–Planck
equation (AFPE) for a bistable system with self-correlated and cross-correlated
additive and multiplicative colored noises, and solve the AFPE for stationary
probability distribution (SPD) of the system. By using the means of the projection
operator method, in which the effects of the memory kernels are taken into account,
the analytic expressions of the normalized correlation function and the relaxation
time on a bistable system were derived. In Sec. 3, based on the numerical results, we
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discuss the stationary probability distribution and the effects of the noise intensity,
the self-correlation time and cross-correlation time for the bistable system, so that
we show further the important effects of cross-correlated colored noises to the
dynamical properties of a bistable system.

2. STATIONARY PROBABILITY DISTRIBUTION, RELAXATION TIME,

AND CORRELATION FUNCTION

We consider a conventional symmetric bistable kinetic system driven by
cross-correlated additive and multiplicative colored noises, in which characteris-
tic of the cross-correlation time and self-correlation time of the noises may be
different. The Langevin equation of this general system reads

dx

dt
= x − x3 + xξ (t) + η(t). (1)

Here ξ (t) and η(t) are zero-mean Gaussia noises, whose statistical properties are

〈ξ (t)〉 = 〈η(t)〉 = 0, (2)

〈ξ (t)ξ (t ′)〉 = D

τ1
exp

(
−|t − t ′|

τ1

)
, (3)

〈η(t)η(t ′)〉 = Q

τ2
exp

(
−|t − t ′|

τ2

)
, (4)

〈ξ (t)η(t ′)〉 = 〈η(t)ξ (t ′)〉 = λ
√

DQ

τ3
exp

(
−|t − t ′|

τ3

)
, (5)

where D and Q are the multiplicative colored noise and the additive colored noise
intensity, respectively. τ1 and τ2 are the self-correlate times of the multiplicative
noise and the additive noise, and τ3 is the cross-correlation time between the multi-
plicative and the additive colored noise. By virtue of the Novikov theorem,(30) Fox’s
approach(31) and the ansatz of Hanggi et al.,(32) the approximate Fokker–Planck
equation corresponding to Eqs. (1) with (2)–(5) is obtained by Refs. 5,12 and 14.

∂ P(x, t)

∂t
= LFP P(x, t), (6)

LFP = − ∂

∂x
f (x) + ∂2

∂x2
G(x), (7)

where

f (x) = x − x3 + Dx

1 + 2τ1
+ λ

√
DQ

1 + 2τ3
, (8)
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and

G(x) = Dx2

1 + 2τ1
+ 2λ

√
DQx

1 + 2τ3
+ Q

1 + 2τ2
. (9)

Note that the approximate Fokker–Planck equation (6) holds under the conditions
of 1 + 2τ1 > 0, 1 + 2τ2 > 0, and 1 + 2τ3 > 0, so there is no restriction on τ1,
τ2, and τ3 for τ1 ≥ 0, τ2 ≥ 0, and τ3 ≥ 0.(5) In the case of a stationary state, the
probability distribution function Pst(x) of Eq. (6) can be obtained below.

1. When the self-correlated times and the cross-correlated time satisfy τ1 =
τ2 = τ3 = τ , the stationary probability distribution of the bistable system
given by

Pst(x) = N

(
Dx2

1 + 2τ
+ 2λ

√
DQx

1 + 2τ
+ Q

1 + 2τ

)β1

× exp

[
−1 + 2τ

2D
x2 + 2λ(1 + 2τ )

√
Q

D3
x

]

× exp


β2 arctan




√
D
Q x + λ

√
1 − λ2





 (10)

for 0 ≤ |λ| < 1 and

Pst(x) = N

(
Dx2

1 + 2τ
+ 2λ

√
DQx

1 + 2τ
+ Q

1 + 2τ

)β1

× exp

[
−1 + 2τ

2D
x2 + 2λ(1 + 2τ )

√
Q

D3
x

]

× exp

[ −(1 + 2τ )

Dx + λ
√

DQ

]
(11)

for |λ| = 1, where

β1 = 1 + 2τ

2D

[
1 + Q

D
(1 − 4λ2)

]
− 1

2
,

and

β2 = − λ(1 + 2τ )

D
√

1 − λ2

[
1 + Q

D
− 2Q

D
(2λ2 − 1)

]
.

2. When the self-correlated times and the cross-correlated time satisfy τ1 =
τ2 and τ3 > τ1, the stationary probability distribution of the bistable system
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given by

Pst(x) = N

(
Dx2

1 + 2τ1
+ 2λ

√
DQx

1 + 2τ3
+ Q

1 + 2τ1

)α1

× exp

[
−1 + 2τ1

2D
x2 + 2λ

√
DQ(1 + 2τ1)2

D2(1 + 2τ3)
x

]

× exp


α2 arctan




√
D
Q

x
1+2τ1

+ λ
1+2τ3√

1
(1+2τ1)2 − λ2

(1+2τ3)2





 (12)

for 0 ≤ |λ| ≤ 1, where

α1 = 1 + 2τ1

2D

[
1 + Q

D

(
1 − 4λ2(1 + 2τ1)2

(1 + 2τ2)2

)]
− 1

2
,

and

α2 = −
λ( 1+2τ1

1+2τ3
)

D
√

1
(1+2τ1)2 − λ2

(1+2τ3)2

×
{

1 + Q

D
− 2Q

D
(1 + 2τ1)2

[
2λ2

(1 + 2τ3)2
− 1

(1 + 2τ1)2

]}
.

3. When the self-correlated times and the cross-correlated time satisfy
τ1 = τ2 and τ3 < τ1, the discriminant � = 4DQ[λ2/(1 + 2τ3)2 − 1/(1 +
2τ1)2], plus-minus of which is determined by taking values of τ1, τ3, and
λ. The stationary probability distribution of the bistable system given by

Pst(x) = N

(
Dx2

1 + 2τ1
+ 2λ

√
DQx

1 + 2τ3
+ Q

1 + 2τ1

) 1+2τ1
2D [1− 3Q

D ]

× exp

[
−1 + 2τ1

2D
x2 + 2λ

√
DQ(1 + 2τ1)2

D2(1 + 2τ3)
x

]

× exp


λ

√
DQ

D

(
1 + 2τ1

1 + 2τ3

)(
−1 + Q

D

) −1
Dx

1+2τ1
+ λ

√
DQ

1+2τ3




(13)
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for � = 0,

Pst(x) = N

(
Dx2

1 + 2τ1
+ 2λ

√
DQx

1 + 2τ3
+ Q

1 + 2τ1

)α1

× exp

[
−1 + 2τ1

2D
x2 + 2λ

√
DQ(1 + 2τ1)2

D2(1 + 2τ3)
x

]

× exp


α2 arctan




√
D
Q

x
1+2τ1

+ λ
1+2τ3√

1
(1+2τ1)2 − λ2

(1+2τ3)2





 (14)

for � < 0.
In Eqs. (10)–(14), N is the responding normalization constant. The

normalization constant N is given by the equation∫ ∞

−∞
Pst(x)dx = 1.

The expectation values of the nth power of the state variable x are given by

〈xn〉 =
∫ ∞

−∞
xn Pst(x)dx . (15)

For a general stochastic process which a stationary state exists, the stationary
correlation function is defined by

C(s) = 〈δx(t + s)δx(t)〉st = lim
t→∞〈δx(t + s)δx(t)〉, (16)

where

δx(t) = x(t) − 〈x(t)〉.
A normalized correlation function is

C(s) = 〈δx(t + s)δx(t)〉st

〈(δx)2〉st
. (17)

The associated relaxation time which describes the fluctuation decay of the dy-
namical variable x is defined by

Tc =
∫ ∞

0
C(t)dt. (18)

By using the projection operator method,(19) the zeroth approximation for the
relaxation time is given by

Tc = γ −1
0 = 〈(δx)2〉st

〈G(x)〉st
. (19)
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Similarly, the first-order approximation for the relaxation time is given by

Tc =
[
γ0 + η1

γ1

]−1

, (20)

where

η1 = 〈G(x) f ′(x)〉st

〈(δx)2〉st
+ γ 2

0 , (21)

and

γ1 = −〈G(x)[ f ′(x)]2〉st

η1〈(δx)2〉st
+ γ 3

0

η1
− 2γ0. (22)

Employing Eqs. (8), (9), and (15), we have

γ0 = k2

〈(x)2〉st − 〈x〉2
st

, (23)

η1 =
(
1 + D

1+2τ1

)
k2 − 3k4

〈(x)2〉st − 〈x〉2
st

+ γ 2
0 , (24)

and

γ1 = −1

η1(〈(x)2〉st − 〈x〉2
st)

[(
1 + D

1 + 2τ1

)2

k2 − 6

×
(

1 + D

1 + 2τ1

)
k4 + 9k6

]
+ γ 3

0

η1
− 2γ0, (25)

where

k2 = D

1 + 2τ1
〈x2〉st + 2λ

√
DQ

1 + 2τ3
〈x〉st + Q

1 + 2τ2
, (26)

k4 = D

1 + 2τ1
〈x4〉st + 2λ

√
DQ

1 + 2τ3
〈x3〉st + Q

1 + 2τ2
〈x2〉st, (27)

and

k6 = D

1 + 2τ1
〈x6〉st + 2λ

√
DQ

1 + 2τ3
〈x5〉st + Q

1 + 2τ2
〈x4〉st. (28)

Here, we see that the zeroth approximation of the relaxation time Tc = γ −1
0

is good agreement with the result calculated by virtue of the Stratonovich-like
ansatz.(33) When λ = 0 and Q = 0, the above results fall back to Eqs. (2.29)–
(2.31), as presented in Ref. 34. In other words, the Stratonovich-like ansatz
completely neglects the memory kernel.
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Applying the projection operator method and performing the Laplace trans-
formation,(19) we easily get the stationary normalized correlation function of the
variable x

C(s) = β exp(−π−s) + (1 − β) exp(−π+s), (29)

where

β = γ1 − π−
π+ − π−

(30)

and

π± = γ0 + γ1

2
± 1

2

√
(γ0 − γ1)2 − 4η1. (31)

3. DISCUSSION AND CONCLUSION

Using the expression Eqs. (10)–(14) of the stationary probability distribution
(SPD) of the bistable system with cross-correlated additive and multiplicative
colored noises, the effects of the cross-correlation strength λ, the self-correlation
time, the cross-correlation time, and the noise intensity can be studied conveniently.
By numerical computation, we plotted the curves of the SPD of the bistable system
in Figs. 1–3.

When the self-correlation times and the cross-correlation time satisfying
τ1 = τ2 = τ3 = τ , the SPD of the system versus the variable x is plotted in Fig.
1. In Fig. 1a, τ is fixed to be 0.2 and λ takes different values. In Fig. 1b, λ is
fixed to be 0.2 and τ takes different values. From Fig. 1, we see that the SPD
exhibits two peaks the posits of which distribute symmetrically at the left and the
right of the origin, respectively. When τ is fixed, for λ > 0, the λ enhances the left
peak of SPD of the bistable system and attenuates the right peak; on the contrary,
for λ < 0, the |λ| enhances the right peak of the SPD of the bistable system and
attenuates the left peak ;The larger |λ| is, the more projecting the effect of |λ| is.
When λ is fixed, for λ > 0, τ enhances the left peak of the SPD of the bistable
system and attenuates the right peak. For λ < 0, τ enhances the right peak of the
SPD of the bistable system and attenuates the left peak; The larger τ is, the more
projecting the effect of τ is.

In Fig. 2, the self-correlation times satisfies τ1 = τ2, τ3 > τ1, and λ = ±0.8.
τ3 is fixed to be 4.1 for Fig. 2a and τ1 is fixed to be 0.5 for Fig. 2b. When the self-
correlation time satisfying τ1 = τ2, τ3 < τ1, the discriminant � = 4DQ[λ2/(1 +
2τ3)2 − 1/(1 + 2τ1)2], plus-minus of which is determined by taking values of
τ1, τ3, and λ. In Fig. 3a, λ = ±0.8, τ1 = 2.0, 1.5 < τ3 < 2.0, and � < 0. From
Fig. 2a, we see that for λ > 0, τ1 enhances the left peak of the SPD of the bistable
system and attenuates the right peak; for λ < 0, τ1 enhances the right peak of the
SPD of the bistable system and attenuates the left peak. From Figs. 2b and 3a, we
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Fig. 1. The stationary probability distribution Pst(x) vs the variable x for D = 0.5, Q = 0.25 and
τ1 = τ2 = τ3 = τ . (a) τ = 0.2, λ takes 0, ±0.3, ±0.6, and ±0.9, respectively. (b) λ = 0.8 (solid line),
λ = −0.8 (dashed line), and τ takes 1, 2.5, and 5, respectively.

see that for λ > 0, τ3 attenuates the left peak of the SPD of the bistable system
and enhances the right peak; for λ < 0, τ3 attenuates the right peak of the SPD of
the bistable system and enhances the left peak.

Equations (11) and (13) show that when x = −(1 + 2τ1)λ
√

Q/D/(1 + 2τ3),
the SPD exhibits divergence. In Fig. 3b and c, |λ| = 0.60, τ1 = 2, τ3 = 1, � = 0,
the SPD diverges at x = ±0.707. λ > 0 is for Fig. 3b and λ < 0 is for Fig. 3c.

The correlated function C(s) describes the dynamical fluctuation decay of the
variable x with time in the stationary state. The normalized correlated functions
C(s) of the bistable system versus the decay time s are shown in Fig. 4. Obviously,
C(s) decreases exponentially as the decay time s increases. In Fig. 3a, τ3 = 4.1,
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Fig. 2. The stationary probability distribution Pst(x) vs the variable x for D = 0.5, Q = 0.25 and
τ1 = τ2. (a) Solid line for λ = 0.8, dashed line for λ = −0.8, τ3 = 4.1, τ1 takes 1, 2, and 4, respectively.
(b) Solid line for λ = 0.8, dashed line for λ = −0.8, τ1 = 0.5, and τ3 takes 0.6 and 3, respectively.

|λ| = 0.80, and τ1 takes different values. The larger τ1 is, the smaller the value of
C(s) is. τ1 attenuates the dependency between the state variables of the bistable
system at different times. In Fig. 3b, τ1 = 0.5, |λ| = 0.80, and τ3 takes different
values. The larger τ3 is, the larger the value of C(s) is. τ3 enhances the dependency
between the state variables of the bistable system at different times .

The relaxation time gives dynamical information about the time scale of the
evolution of a spontaneous fluctuation in the steady state and reflects the evolution
velocity of the system from a arbitrary initial state to the stationary state.(34–37) The
linear relaxation time Tc versus the multiplicative noise intensity D is plotted in
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Fig. 3. The stationary probability distribution Pst(x) vs the variable x for D = 0.5, Q = 0.25 and
τ1 = τ2. (a) τ1 = 2, λ = 0.8 (solid line), λ = −0.8 (dashed line), and τ3 takes 1.6, 1.8, and 1.95,
respectively. (b) τ1 = 2, τ3 = 1, and λ = 0.6. (c) τ1 = 2, τ3 = 1, and λ = −0.6.
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Fig. 4. The normalized correlation function C(s) as a function of decay time s for D = 1, Q = 0.25,
|λ| = 0.8, and τ1 = τ2. (a) τ3 = 4.1. τ1 takes 1, 2.5, 3, and 4, respectively. (b) τ1 = 0.5. τ3 takes 0.6,
0.8, 1, and 2, respectively.

Fig. 5 (τ1 = τ2 = τ3 = τ ). From Fig. 5, we see that the relaxation time Tc decreases
monotonously as the noise intensity D increases, D speeds up the relaxation of the
system from unstable points, which when D < Q, the effects are most obvious;
when D > Q, the effects are damped. In Fig. 5a, the cross-correlation time is
fixed to be 0.5, the relaxation time Tc decreases as the cross-correlation strength
|λ| increases. In Fig. 5b, the cross-correlation strength |λ| is fixed to be 0.5, the
relaxation time Tc increases as the cross-correlation time τ increases.

From above discussion, we understand that cross-correlated additive and mul-
tiplicative colored noises play an important role in a bistable system. In the bistable



Effects of Self-Correlation Time and Cross-Correlation Time 1523

Fig. 5. The linear relaxation time Tc as a function of the noise intensity D for τ1 = τ2 = τ3 = τ , and
Q = 0.25. (a) τ = 0.5, λ takes ±0.1, ±0.5, and ±0.9, respectively. (b) λ = ±0.5, τ takes 0, 0.5, and
1, respectively.

system with cross-correlated additive and multiplicative colored noises, for λ > 0,
λ enhances the stationary probability distribution of the dynamical variable x < 0
and attenuates the stationary probability distribution the dynamical variable x > 0;
on the contrary, for λ < 0, |λ| enhances the stationary probability distribution of
the dynamical variable x > 0 and attenuates the stationary probability distribution
of the dynamical variable x < 0. The noise intensity D(Q is fixed to be 0.25) and
the cross-correlation strength |λ| speed up the system relaxation from unstable
points, but the cross-correlation time slows down the system relaxation from un-
stable points. The self-correlation times τ1 and τ2 make the stationary probability
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distribution of the dynamical variable x be shaper and speed up the fluctuation
decay of the of the dynamical variable x . On the contrary, the cross-correlation
time τ3 makes the stationary probability distribution of the dynamical variable x
be flatter and slow down the fluctuation decay of of the dynamical variable x . In
Fig. 1b, τ1 = τ2 =τ3 = τ , which the action magnitude of the self-correlation time
is same with the action magnitude of the cross-correlation time, but τ enhances
still the fluctuation of the SPD, that is to say, the effect of the self-correlation time
is more projecting than the effect of the cross-correlation time.
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